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Signature of classical chaos on quantum tunneling
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We examine the signature of classical chaos on a generic quantum phenomenon, namely, quantum
tunneling in a nonintegrable, conservative two-degree-of-freedom Hamiltonian system. We show that, as
one passes from the regular to chaotic regime, the quantum tunneling probability versus coupling-
constant curve exhibits a significant change of slope in the neighborhood of the critical chaotic threshold
(beyond which classical chaos sets in). This shows that the presence of Kolmogorov-Arnold-Moser bar-
riers of classical phase space manifests in quantum phenomena such as quantum tunneling.

PACS number(s): 05.45.+b, 03.65.—w, 74.50.+r, 73.40.Gk

I. INTRODUCTION

The problem of quantum chaos [1-6] has been one of
the major issues in nonlinear dynamics today. The main
question that has been addressed over the years is how a
dynamical system that is classically chaotic behaves upon
quantization. Although no general correspondence be-
tween the classical solutions, i.e., the phase-space trajec-
tories and the quantum solutions (that is, the wave solu-
tions excluding those when the system is integrable), is
known, considerable insight has been gained by quantiz-
ing the classical system that exhibits complete stochasti-
city, such as the Sinai billiard system, Arnold’s cat map,
etc. The related studies are based on some conjectures,
including repulsion of energy levels in the stochastic re-
gime, and peaking of energy-level spacing about a finite
value rather than having its maximum at zero separation.
The situation for near-integrable systems in which the
regular and stochastic motions are intermingled on the
finest scale poses much more difficult problems, for which
one has to look for a ‘“coarse-grained” quantum phase
space. A vast body of literature has been devoted to all
these studies, formally referred to as quantum chaos.

However, there is a class of problems [7-12] on the re-
lated issues that have received relatively less attention.
This may be posed in the following way: What is the sig-
nature of classical chaos in a generic quantum
phenomenon? One early attempt in this direction was
made in Ref. [17]. It has been demonstrated that classi-
cal Kolomogorov-Arnold-Moser (KAM) barriers still act
as barriers even in an intrinsic quantum phenomenon like
quantum diffusion. Similarly, in the semiclassical limit,
in contrast to regular behavior, the chaotic dynamics
may result in an increase in squeezing [11], a generic
quantum phenomenon. The object of the present paper is
to address a related issue. We know that quantum tun-
neling is a typical nonclassical effect. We now ask: What
is the effect of classical chaos on quantum tunneling? We
demonstrate the signature of the presence of KAM bar-
riers in this generic quantum phenomenon.

Before going into further detail, let us first note that
quantum tunneling in a one-degree-of-freedom system is
an old problem and has been since the birth of quantum
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mechanics. Since all one-degree-of-freedom systems are
integrable, one must consider a tunneling system with
more than one degree of freedom in order to analyze the
influence of chaotic behavior on this nonclassical effect.
Again, from the analytical point of view, the barrier-
penetration problem in a system with more than one de-
gree of freedom is a difficult one, since the available per-
turbation methods are untenable for arbitrary coupling
and the higher-dimensional Wentzel-Kramers-Brillouin
(WKB) methods [13] are extremely cumbersome to
render any useful, tractable result. Very recently, howev-
er, a number of numerical methods have been put for-
ward. For example, the tunneling rate has been calculat-
ed using the Husimi representation in a driven Hamil-
tonian system [10]. A complex scaling technique [14] has
been extended to calculate the tunneling rate in a two-
degree-of-freedom Hamiltonian system describing proton
transfer in organic molecules. Our purpose here is two-
fold. First, to provide an analytical expression for the
tunneling rate for a class of two-degree-of-freedom Ham-
iltonian systems and second, to examine, numerically, the
influence of classical chaos on quantum tunneling for a
typical nonintegrable system.

Our study is based on a conservative Hamiltonian sys-
tem consisting of two coupled subsystems, one having a
smooth potential-energy function with a metastable
minimum, and the other being a simple harmonic oscilla-
tor. By virtue of having the finite barrier height associat-
ed with the subsystem with a metastable minimum, quan-
tum tunneling is possible. It should be noted that both
subsystems are separately integrable. However, the cou-
pled system is classically nonintegrable when the poten-
tial of the tunneling subsystem allows an homoclinic orbit
to exist. In what follows, we quantitatively relate the
quantum tunneling rate to the Fourier spectrum of the
classical trajectory in such a nonintegrable system, and
show that as we pass from the regular to chaotic regime
the quantum tunneling versus coupling-constant curve
exhibits a significant change of slope in the neighborhood
of the critical classical chaotic threshold. We thus
demonstrate the presence of KAM barriers in this non-
classical effect.

The rest of the paper is organized as follows. In Sec. II
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we derive the analytical expression for the probability of
quantum tunneling in a class of two-degree-of-freedom
Hamiltonian systems. In Sec. III we prove the nonin-
tegrability of the model, numerically investigate the clas-
sical chaos, and examine its signature on quantum tun-
neling. Conclusions are presented in Sec. IV.

II. QUANTUM TUNNELING IN A CLASS
OF TWO-DEGREE-OF-FREEDOM SYSTEMS

We consider the following Hamiltonian describing a
class of two-degree-of-freedom systems:

H=1Mg*+V(g)+imx*+1mQ*x*—kgx , (1)
where the two subsystems are described by the coordi-
nates (g,4) and (x,% ). The g subsystem is associated with

the potential function V(q). Our first requirement about
this subsystem is that it must possess a metastable

|

q(T)=qf x(T)=x

k(g x;,0;q7,x5, T)= fq(0)=q.

Here, L denotes the Euclidean Lagrangian (H). [q(2)]
and [x (z)] are the functional measures. One then defines
the reduced imaginary-time Green’s function for the g
system by integrating the x-system or harmonic-oscillator
subspace exactly to obtain

k(q,»,O;qf,T)zfdxik(q,-,x,-,O;qf,xf,T)xi=xf . 4)

Making use of spectral expansion in term of the eigen-
states of H, one obtains

k=3 fdx(qfln Y{nlq;Yexp(—E,T/#) , (5)

where |g;) and [q, ) are the position eigenstates and T is
a positive number.

Leading terms in an expression for large 7 and small g
gives us the energy and wave function of the lowest-lying
eigenstates. In particular, the quantum tunneling rate is
obtained from a small imaginary part of that energy state
after following the analytic continuation procedure. For
details, we refer to Refs. [13] and [16]. The quantum tun-
neling probability P is given by

P =(S 4/21H) woexp( —S /%) , (6)

where S¢ is given by

Sg=So+S, (7)
with
So= fOT[%qz-i— V (q)]dt +const

and

(g1 )=, x()lexp

minimum to qualify it as a tunneling system. The last
term denotes the coupling of the two subsystems through
the coupling constant k. M, m, and Q are the mass of the
g system, and the mass and frequency of the harmonic os-
cillator, respectively. We note, in passing, that similar
Hamiltonians had been the subject of earlier studies in re-
lation to proton transfer in organic molecules [14] and in-
hibition of chaos by parametric perturbation [15]. For
the present study, we rewrite the Hamiltonian in a more
simple form:

H=1+V(g)+1x2+10%x*—kgx , )

where we have redefined the mass terms as M =m =1.

The method of our calculation is the path-integral ap-
proach of Feynman, which takes into account of the
quantum transition amplitude for the whole system [(g
system) X (x system)] to go from coordinates (g;,x;) at
time zero to (g r»X% ) at time T, as follows:

1 T
ﬁfoL(q(t),x(t))dt . 3)
[
S, =—(k?/4Q)
* T ’ —_ Y ’
xf_mfo dt dt'exp(—Qlt —t'|)g()g(¢') . (8)

Here, w, is the approximate uncoupled bounce frequency
of the tunneling system. The effect we consider here is
primarily contained in the S| part of S 4.

In deriving expression (8), it has been assumed, as in
Ref. [16], that

q(t)=q(t+T) for large T , 9)

which implies ¢ (¢) is quasiperiodic. This quasiperiodicity
allows us to make the following Fourier expansion of the
classical path:
n = oo
q()= 3 A(w,)explin,t), (10

n=-—o

where 4 (w, ) are the complex Fourier coefficients. Using
expansion (10) in (8) and performing the integration ex-
plicitly for large T (tending to infinity), we obtain

n=o |20A4(w,)A(—w,)

S, =—(k2/4Q) 3 P . an

n=—oco

Inverse Fourier expansion of (10) reveals that 4 (—w,)
=A*(w,). Therefore, S; may be further simplified as
follows:

o S(w)dw
__ 2
S =—k fo Q4+ (12)
where we have set | 4 (w)|>*=S(w) and transformed the
sum into an integral. S(w) is simply related to the
Fourier spectrum of the classical trajectory g ().

We have thus related the quantum tunneling probabili-
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ty to the Fourier spectrum of the classical trajectory.
Therefore, to examine the effect of classical motion on
the quantum tunneling rate, we first have to solve the
classical equations of motion for g (?) starting from the
Hamiltonian H for a particular V(gq), calculate the
Fourier spectrum of the trajectory to obtain S(w), and
then perform the integration in (12) to obtain S 4.

Our first conclusion is the following. Since the integral
in Eq. (12) is always positive, the quantum tunneling
probability of the g system is increased approximately by
a factor exp(S, /h) when its coupling to the harmonic os-
cillator is switched on. Thus the quantum tunneling is
enhanced by introduction of another degree of freedom.
The detailed nature of this enhancement will be subject to
numerical study, as presented in the next section.

III. CLASSICAL CHAOS
AND QUANTUM TUNNELING

So far, our treatment of quantum tunneling for a class
of two-degree-of-freedom conservative Hamiltonian sys-
tems is more or less general, subject to fulfillment of one
particular requirement of the g system; that is, V' (g) must
have a metastable minimum in order to qualify it as a
tunneling system. In this section, however, we impose
our second requirement on ¥ (q), namely, that a g system
must possess a homoclinic orbit. As we show in the next
subsection, the presence of this orbit renders the overall
Hamiltonian system nonintegrable [17,18,15] for finite
nonzero coupling between the two subsystems. Depend-
ing on the values of the coupling constant k, one would
therefore expect a variety of dynamical features that
must be manifested in the Fourier spectrum of classical
trajectories obtained from the solutions of Hamilton’s
equations of motion. Subsequently, quantum tunneling
would be affected. With this in mind, we now specifically
consider the following potential function ¥V (q) for the g
system:

Vig)=aq*—Bq*, (13)
where a and 3 are positive integers.
A. Nonintegrability of the model

The nonintegrability of the present model Hamiltoni-
an,

H(q,q,x,%)=X(x,%)+Q(q,q)+eH q,¢,x,%) , (14)
X(x,%)=1x2+10%?, (15)
Q(q,§)=1¢*—Bg*+aq*, (16)
and

H'(q,4,x,%)=—kgx , (17)

is amenable to theoretical analysis using Melnikov’s
method [15,17,18], where one is concerned with the per-
turbation of the homoclinic manifold in a Hamiltonian
system that consists of an integrable part [such as
X (x,X)+Q(q,4) in the present case] and a small pertur-
bation (H!). € is a smallness parameter, which may be

set equal to 1 at the end of the calculation. As pointed
out earlier, the uncoupled system consisting of X and Q
systems is integrable. It is well known that if Melnikov’s
function (which, loosely speaking, measures the leading
nontrivial distance between the stable and unstable mani-
folds) contains simple zeros, then the stable and unstable
manifolds (which, for an unperturbed system, coincide as
a smooth homoclinic manifold) intersect transversely for
small perturbation generating scattered homoclinic
points, which asserts nonintegrability and qualitatively
explains the onset of stochasticity around the separatrix.

To this end, we note that Q system possesses the homo-
clinic orbit

g (t)=(B/a)*sech(2B)*(t —t,) ,
§(t)=—(2/a)"’Bsech(2B)"*(t —1,)
Xtanh(2B)"%(t —t,) ,

(18)

joining the hyperbolic saddle (¢ =¢ =0) to itself. We are
then in a position to make direct use of the theorem of
Holmes and Marsden [17] to calculate Melnikov’s func-
tion for the present conservative Hamiltonian system H.
The calculation involves the integration of Poisson brack-
et {Q,H'} around the homoclinic orbit as follows:

M(ty)=[° (Q.H"}dr . (19)
Explicit evaluation of the Poisson bracket yields
Q
M(ty)=mk (h/a)2cosQt sech | ——— | ,  (20)
o T 2028012

where one must take into account that the energy of the
homoclinic orbit is zero and H (x,x,q,4)=h (h >0).

Since M (t¢,) has simple zeros and is independent of e,
we conclude that for any € >0 (but sufficiently small), one
can have transverse intersection on the energy surface
h >0, resulting in generation of homoclinic points. This
homoclinic chaos is the precursor of the global chaos that
is studied numerically in the following subsection.

B. Numerical study of chaos

The equations of motion corresponding to Hamiltonian
(),

H=(4%/2)+(q*/10)—(g*/2)
+(x2/2)+Q4x%/2)—kxq ,

have been solved numerically for various values of cou-
pling constant k and for Q. Figures 1(a)-1(c) display
some representative variation of g as function of time for
k =0.0005, 0.000 66, and 0.0009, and for Q=1.0. It is
immediately apparent that, as k increases, the pattern of
complexity in the waveform changes very sharply. The
definitive proof of chaotic behavior, however, is obtained
by examining the sensitive dependence of initial condi-
tions. In particular, a positive maximal Lyapunov ex-
ponent is characteristic of chaos, while its zero and nega-
tive values signify a marginally stable orbit and a periodic
orbit, respectively. Following the method of Benettin
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et al. [19], which has also been employed by others [20],
we have calculated this exponent for the aforementioned
parameter ranges. It is also important to note that, for a
very low value of coupling constant k, this exponent is
found to be negative. But, as the coupling constant in-
creases, the exponent becomes positive beyond a critical
threshold (~0.00066), which determines the onset of
stochasticity or irregular behavior. [We have also carried
out a calculation based on Toda-Brumer-Duff criteria (a
local estimate) in search of a critical energy for the Ham-
iltonian (2). Unfortunately, the numerical check shows
that its magnitude is a large overestimate of the chaotic
threshold.]
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FIG. 1. Some representative variations of position of the
double-well oscillator vs time ¢ for (a) k =0.0005, (b) k
=0.000 66, and (c) kK =0.0009 (both units are arbitrary).

C. Signature of classical chaos
on quantum tunneling

Having solved Hamilton’s equation of motion numeri-
cally to obtain g (#) as a function of time, we now calcu-
late | A(®)|* as defined in Eq. (10) using a Fourier-
transform algorithm for fairly long time series. Explicit
evaluation of the sum in Eq. (11) then yields S, and hence
the quantum tunneling rate according to relation (6).

The results have been plotted in Fig. 2 for a harmonic
oscillator having a frequency Q2=1.0. It is evident that
the tunneling rate increases slowly at the beginning in the
regular region, and then relatively more rapidly as a func-
tion of the coupling constant k in the stochastic region.
What is immediately apparent is that classical chaos may
significantly enhance quantum tunneling. It is important
to note that, as one passes from the regular to chaotic re-
gion the tunneling probability versus coupling-constant
curve exhibits an interesting change of slope in the neigh-
borhood of the classical chaotic threshold, i.e., around
0.000 66. This, we believe, is a clear signature of classical
chaos (or of the presence of KAM barriers) on this gener-
ic quantum effect. This is also reminiscent of the fact [7]
that the classical KAM barrier acts as a barrier in the
quantum diffusion process. Our calculations have been
done on a conservative Hamiltonian system. The
enhancement of tunneling by applying a classical field
had been noted earlier [10] numerically (making use of
Husimi representation) on a driven system. Our formula-
tion, based on the instanton technique [13], which relates
the quantum tunneling rate to the Fourier spectrum of
the classical trajectory, is, however, completely analyti-
cal.

Next, in Fig. 3, we show how the curve in Fig. 2 de-
pends on Q. Here the ordinate is plotted on a logarith-
mic scale for the sake of better comparison. It is immedi-
ately apparent that the Q dependence is manifested in
two ways. Curve (a) in Fig. 3 is the same as the curve in
Fig. 2, i.e., for =1.0. As Q is varied on either side of
0=1.0 by detuning it to 1.25 or to 0.75, the tunneling
probability is drastically modified. At a very low value of
the coupling constant, where the regular region in phase
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FIG. 2. Variation of InP (quantum tunneling probability
10°P) vs k (coupling constant 10%*k) for @=1.0. The change of
slope at the critical chaotic threshold at k =0.000 66 signifies
the presence of KAM barriers (both units are arbitrary).
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FIG. 3. Variation of InP (quantum tunneling probability
10°P) on a logarithmic scale vs k (coupling constant 10*k) for
three different values of the harmonic-oscillator frequency Q:
(a) =1.00, (b) =1.25, and (c) 2=0.75. Critical chaotic
thresholds appear at (a) kK =0.00066, (b) K =0.0003, and (c)
K =0.0005 (units are arbitrary).

space prevails, the tunneling probability decreases with
an increase in the frequency of the oscillator. Beyond the
critical threshold, however, the situation is much more
complicated. Also, an examination of the change of slope
reveals that the chaotic threshold at 2=1.0 goes down-
ward as one switches the harmonic-oscillator frequency
Q to 0.75, or to 1.25. It is important to note that in all
our calculations we have considered the barrier penetra-
tion of the particle whose starting point is one of the clas-
sical turning points of the double-well potential at ¢ =0.1
and p =0.0.

IV. CONCLUSION

To summarize, we have demonstrated the signature of
classical chaos (or the presence of KAM barriers) in a
generic quantum phenomenon such as tunneling in a
nonintegrable conservative two-degree-of-freedom Ham-
iltonian system. Our study reveals that for a coupled sys-
tem such as Eq. (2), the tunneling rate can be quantita-

tively related to the Fourier spectrum of the classical tra-
jectories. Although the spectrum has been studied
analytically and numerically on several occasions [21] in
the case of maps for forward and reverse bifurcations
(largely in the context of dissipative dynamics), and some
universal scaling laws have been proposed, such scaling
behavior of the spectrum for conservative systems is yet
to be discovered.

So far, we have concentrated on the barrier-penetration
problem of a double-well oscillator coupled to a harmonic
oscillator. A pertinent question in this context is: Does
the effect we have discussed survive in the classical case,
where barrier tunneling is replaced by a thermally ac-
tivated barrier crossing? This is important in relation to
the study of the influence of deterministic coupling be-
tween the reaction coordinate and a transverse normal
mode on the activated barrier crossing (which has been
investigated in the context of classical dynamics [22,23]).
From studying the variation of reaction rate with cou-
pling constant, it has been observed that the reaction rate
attains a plateau that is maintained until the coupling pa-
rameter k approaches a threshold value (not chaotic
threshold) similar to that shown by the curve in Fig. 2;
there is a very marked increase in reaction rate around
this value. Based on perturbation theory, this has been
explained as a noise-induced transition. Since classical
KAM barriers, which have a direct bearing on the rate of
a chemical reaction, make their presence felt in a number
of different phenomena—such as classical and quantum
diffusion, and in barrier tunneling (as shown in the
present case)—it is quite plausible that such a signature
of classical chaos in activated barrier crossing is present.
For this, one must go beyond perturbation theory to deal
with the reactive mode. We hope to address this problem
as a separate issue. We also note, in passing, that
enhancement of tunneling by addition of a single degree
of freedom is exactly the opposite of what happens in the
case of macroscopic quantum tunneling.
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